Notes

Palladium(0)-Catalyzed Reactions of Allylic Benzotriazoles with Enamines: A Novel Method for the Stereoselective Synthesis of (4E) $-\gamma, \delta$-Unsaturated Ketones

Alan R. Katritzky,* Zhizhen Huang, and Yunfeng Fang
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200

Received February 1, 1999

Introduction

γ, δ-Unsaturated ketones are common moieties in natural products. ${ }^{1 a-c}$ Possible synthetic approaches include those which form (i) the $\mathrm{C}(\mathrm{a})-\mathrm{C}(\mathrm{b})$ bond (cf. Scheme 1) either by the reaction of allyl iodide and tosylmethyl isocyanidefollowed by hydrolysis ${ }^{2}$ or by reacting S phenyl thioesters or Weinreb-type amides with homoallyl Grignard reagents, ${ }^{3 a, b}$ (ii) the $\mathrm{C}(\mathrm{c})-\mathrm{C}(\mathrm{d})$ bond by conjugate addition of either lithium vinylcuprate or alkenyl-9-BBN to α, β-unsaturated carbonyl compounds, ${ }^{4 \mathrm{a}, \mathrm{b}}$ or (iii) the $\mathrm{C}(\mathrm{d})-\mathrm{C}(\mathrm{e})$ bond by either the reaction of γ-keto aldehydes with Wittig reagents ${ }^{5 a, b}$ or anionic oxy-Claisen rearrangement of enolates of α-allyloxy ketones. ${ }^{6}$ However, most common preparations of γ, δ-unsaturated ketones are by the formation of the $C(b)-C(c)$ bond (Scheme 1). Such reactions usually involve a nucleophile of type $\mathbf{2}$ and an electrophile of type $\mathbf{3}$ as also shown in Scheme 1. Thus, Saucy et al. report that the reaction of isopropenyl ether (cf. 2, $\mathrm{X}=\mathrm{OEt}$) with tertiary vinyl carbinols (cf. 3, $\mathrm{X}=$ OH) under acid catalysis gives a mixture of (4E)- and (4Z)- γ, δ-unsaturated ketones in good yields. ${ }^{7}$ Mukaiyama et al. prepare γ, δ-unsaturated ketones by reactions of secondary and tertiary allyl methyl ethers (cf. 3, Y = OMe) with silyl enol ethers (cf. 2, $\mathrm{X}=\mathrm{OSiR}_{3}$) in the presence of a catalytic amount of trityl perchlorate. ${ }^{8}$ Under Lewis acid catalysis, silyl enol ethers react with some allylic halides or acetates to afford good yields of γ, δ-unsaturated ketones. ${ }^{9}$ (α-Sulfenylmethyl)allyl ac-

[^0]
Scheme 1

1

etates al so react with silylated carbon nucleophiles to give γ, δ-unsaturated ketones in moderate to good yields. ${ }^{10 a, b}$

Palladium(0)-catalyzed nucleophilic substitution of alIylic compounds is an important methodology in contemporary organic synthesis for the preparation of many classes of compounds. ${ }^{11 a-c}$ This method has also been used to prepare γ, δ-unsaturated ketones by forming the $\mathrm{C}(\mathrm{b})-\mathrm{C}(\mathrm{c})$ bond (Scheme 1). Thus, under the catalysis of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$, piperidinocyclohexene reacts with allylic phenoxide to form 2-allylcycl ohexanone, a γ, δ-unsaturated ketone, in moderate yield. ${ }^{12}$ Palladium graphite can also be employed as a heterogeneous catalyst in the above reaction. ${ }^{13}$ Utilizing $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ catalysis, allyl acetate or phenoxide reacts with various hexanone enamines to give 2-allylcyclohexanone in moderate yields. ${ }^{14}$ U nder neutral conditions, ketones and aldehydes react with 2-allylisourea in the presence of a catalytic amount of a palladium(0) complex to give γ, δ-unsaturated ketones and aldehydes. ${ }^{15}$

In recent years, benzotriazole has been widely used as a synthetic auxiliary. ${ }^{16}$ Structurally diversified N -allylbenzotriazoles have been prepared very conveniently from allylbenzotriazole. ${ }^{17}$ In a previous paper, we reported that, under the catalysis of palladium complex, N -allylbenzotriazoles can react readily with amines as a nitrogen nucleophile to give a wide range of allylamines in good yields. ${ }^{18}$ Enamines are well-known carbon

[^1]Table 1. Stereoselective Synthesis of (4E) $-\gamma, \delta$-Unsaturated Ketones by Palladium-Catalyzed Reaction

starting benzotriazole compd	product					
	no.	R^{1}	R^{2}	R^{5}	R^{6}	$E / Z^{\text {a }}$
5	8a					96/4
5	8b	$\mathrm{CH}_{3} \mathrm{C}$	CH_{3}			98/2 (98/2)
5	8c	Ph	CH_{3}			95/5
10a	14a			$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}$	H	99/1
10a	14b	$\mathrm{CH}_{3} \mathrm{C}$	CH_{3}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}$	H	90/10 (94/6)
10b	14c	$\mathrm{CH}_{3} \mathrm{C}$	CH_{3}	1-NpthCH 2	H	97/3
10b	14d	Ph	CH_{3}	1-NpthCH2	H	96/4
10b	14e			1-NpthCH2	H	95/5
11	14f	$\mathrm{CH}_{3} \mathrm{C}$	CH_{3}	CH_{3}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}$	90/10
12	14g			$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}$	99/1
12	14h	Ph	CH_{3}	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}$	98/2

a The E/Z ratios were determined by GC/MS on a Hewlett-Packard 5890 Series II Gas Chromatograph HP-5 ($30 \mathrm{~m} \times 0.32 \mathrm{~mm} \times 0.25$ $\mu \mathrm{m}$) capillary column with the temperature range from 100 to $150^{\circ} \mathrm{C}$ at the rate $10^{\circ} \mathrm{C} / \mathrm{min}$. The E / Z ratio in parentheses are taken from the reaction using toluene as solvent.

Scheme 2

7a-c

8a-c (see Table)
nucleophiles in organic synthesis. ${ }^{19}$ In this paper, we demonstrate that various allylic benzotriazol es react with enamines under palladium catalysis in the presence of stoichiometric zinc bromide to provide a general method for the synthesis of γ, δ-unsaturated ketones.

Results and Discussion

In the presence of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ alone, 1-(γ-phenylaIlyl)benzotriazole 5 and enamine 6a did not react in refluxing benzene. The departure of a benzotriazol e anion as a leaving group is well-known to be facilitated in the presence of the Lewis acid $\mathrm{ZnBr}_{2} .{ }^{20 \mathrm{a}-\mathrm{c}}$ Indeed, under the co-action of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ and ZnBr_{2}, 1-(E)-phenylallylbenzotriazole 5 reacts smoothly with enamines $\mathbf{6 a - c}$ to form iminium salts $\mathbf{7 a}-\mathbf{c}$, which undergo subsequent hydrolysis to produce the expected γ, δ-unsaturated ketones 8a-c in good yields (81-91\%) (Scheme 2). Compound $8 \mathbf{a}$ is a known compound synthesized via a stannyl enolate in 93% yield by Yasuda et al. ${ }^{21}$ The (E)-configurations of products $\mathbf{8 a}-\mathbf{c}$ were determined by the vicinal coupling constants of the δ-proton signal of 16 Hz . Efficient reaction of $\mathbf{5}$ with enamine $\mathbf{6}$ a requires an excess of $\mathbf{6 a}$ together with a catalytic amount of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ and 2 equiv of ZnBr_{2} (the reaction was much slower with 1.2 equiv of ZnBr_{2}). Enamine 6a derived from a cyclic, $\mathbf{6 b}$ from an acyclic, and $\mathbf{6 c}$ from an aryl ketone can each

[^2]
Scheme 3

10a, 10b, 11, 12

13

14a-h (see Table)

$$
\begin{aligned}
& \text { 10a: } \mathrm{R}^{5}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}, \mathrm{R}^{6}=\mathrm{H} \\
& \text { 10b: } \\
& \text { 11: } \\
& \mathrm{R}^{5}=1-\mathrm{CH}_{3}, \mathrm{R}^{6}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \\
& \text { 12: } \\
& \mathrm{R}^{5}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2} \\
& \\
& R^{6}=\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CH}_{2}
\end{aligned}
$$

act as the nucleophile to form a $\mathrm{C}-\mathrm{C}$ bond by reaction with N-cinnamylbenzotriazole 5. Qualitatively, the reaction rates are in the order $\mathbf{6 a}>\mathbf{6 b}>\mathbf{6 c}$ for the three enamines.
α-Allylbenzotriazole (9) was lithiated by n-BuLi and treated subsequently with an alkyl halide to give regioselectively the α-monosubstituted allylbenzotriazoles 10a,b in yields of $90-92 \%$ as previously reported. ${ }^{17 b}$ α-Allylbenzotriazole 9 can also be used in a doublelithiation technique with considerable flexibility: it was sequentially twice lithiated, and two of the same or different alkyl groups were introduced to give the $\alpha, \alpha-$ disubstituted allylbenzotriazol es 11 and 12 (Scheme 3).

Catalysis by $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ and ZnBr_{2} transforms α-substituted allylbenzotriazoles 10a, 10b, 11, and 12 into cationic π-allylpalladium complex intermediates 13 (Scheme 3). The enamine 6 then attacks the γ-position of α-substituted allylbenzotriazol es 10a, 10b, 11, and 12 which are sterically less hindered. No product from attack at the α-position of compounds 10a, 10b, 11, and $\mathbf{1 2}$ was found. Both the monosubstituted 10a,b and the disubstituted allylbenzotriazoles 11 and $\mathbf{1 2}$ produced the expected (\mathbf{E})- γ, δ-unsaturated ketones 14a-h in yields of 80-90\% after hydrolysis (Table 1). The (E)-configurations of products $\mathbf{1 4 a} \mathbf{- h}$ were demonstrated by the value of their vicinal coupling constants shown by the δ-proton signal to be $15.0-15.5 \mathrm{~Hz}$.

The ratios of (E)-isomer to (Z)-isomer of $\mathbf{8 a}-\mathbf{c}$ and 14a-h were obtained by GC/MS, in which there were two peaks possessing the same molecular weight. The
analysis results show that this reaction has high stereoselectivities of (E)- γ, δ-unsaturated ketones ((E)-isomers >90\%).

Conclusion

The structurally diversified allylic benzotriazoles 5, 10a, 10b, 11, and 12 react with various enamines smoothly under the action of $\mathrm{Pd}(\mathrm{OAc})_{2} / \mathrm{PPh}_{3}$ and ZnBr_{2}, affording a general method for the stereoselective synthesis of (4 E) $-\gamma, \delta$-unsaturated ketones $\mathbf{8 a}-\mathbf{c}$ and $\mathbf{1 4 a -}$ h. Compared with previous methods, our method has the advantages of readily available starting materials, convenient manipulations, mild reaction conditions, high regio- and stereoselectivity, and good yields.

Experimental Section

General Comments. Melting points were determined on a hot stage apparatus without correction. ${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (75 MHz) spectra were recorded in CDCl_{3} with TMS and CDCl_{3}, respectively, as the internal reference. Compounds 5, 10a, 10b, 11, and 12 and enamines $\mathbf{6 a - c}$ were prepared by the literature method. ${ }^{17 a-d}$

General Procedure for the Synthesis of (4E) $-\gamma, \delta$-Unsaturated Ketones 8a-c and 14a-i. Under argon, a mixture of allylbenzotriazole 5, 10a, 10b, 11, or 12 (2 mmol), $\mathrm{Pd}(\mathrm{OAc})_{2}(13$ $\mathrm{mg}, 0.06 \mathrm{mmol}), \mathrm{PPh}_{3}(63 \mathrm{mg}, 0.24 \mathrm{mmol})$, and $\mathrm{ZnBr}_{2}(0.90 \mathrm{~g}, 4$ mmol) was refluxed in benzene (10 mL) (toluene also was used as solvent in some cases; the reaction temperature was 80-90 $\left.{ }^{\circ} \mathrm{C}\right)$ for 15 min . Then the solution of enamine $6(4 \mathrm{mmol})$ in benzene (5 mL) (or toluene when toluene was used as solvent) was added, and the reaction mixture was refluxed for $1-3 \mathrm{~h}$. After the evaporation of benzene, water (10 mL) was added and the mixture was refluxed for 30 min . $\mathrm{NaOH}(1 \mathrm{~N}, 30 \mathrm{~mL}$) was added, and the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The organic phase was washed with a saturated solution of ammonium chloride (10 mL) and dried over magnesium sulfate. After removal of solvent, the residue was subjected to column chromatography to produce (4E)- γ, δ-unsaturated ketones $\mathbf{8 a}-\mathbf{c}$ and 14a-h.

2-[(E)-3-Phenyl-2-propenyl]cyclohexanone (8a): oil; yield 91\%; ${ }^{1}$ H NMR $\delta 1.32-1.52$ (m, 1H), 1.60-1.78 (m, 2H), 1.79$1.96(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.25(\mathrm{~m}, 3 \mathrm{H}), 2.27-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.60-2.81$ $(\mathrm{m}, 1 \mathrm{H}), 6.14-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.68(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-$ $7.62(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 25.0,27.9,32.9,33.5,42.0,50.6,125.9$, 126.9, 128.3, 128.4, 131.5, 137.5, 212.4. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}: \mathrm{C}, 84.06$; $\mathrm{H}, 8.48$. Found: C, 83.63; H, 8.25.
(E)-4-Methyl-7-phenyl-6-hepten-3-one (8b): oil; Yield 90\% (yield was 87% when toluene was used as solvent); ${ }^{1} \mathrm{H}$ NMR δ $1.03(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 2.17-2.31(\mathrm{~m}$, 1H), 2.37-2.59 (m, 3H), 2.60-2.72 (m, 1H), 6.05-6.19 (m, 1H), $6.38(\mathrm{~d}, \mathrm{~J}=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.37(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 7.6$, 16.2, 34.4, 36.3, 45.9, 125.9, 127.0, 127.4, 128.4, 131.8, 137.2, 214.2. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}$: C, 83.12; H, 8.97. Found: C, 82.91; H, 9.06.
(E)-2-Methyl-1,5-diphenyl-4-penten-1-one (8c): oil; yield 81\%; ${ }^{1} \mathrm{H}$ NMR $\delta 1.18-1.38$ ($\mathrm{m}, 3 \mathrm{H}$), 2.28-2.45 (m, 1H), 2.65$2.80(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.70(\mathrm{~m}, 1 \mathrm{H}), 6.12-6.30(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}$ $=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.40(\mathrm{~m}, 5 \mathrm{H}), 7.40-7.60(\mathrm{~m}, 3 \mathrm{H}), 7.95(\mathrm{t}$, $\mathrm{J}=3.9 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 17.2,36.8,40.9,126.0,127.0,127.5$, 128.2, 128.4, 128.6, 132.0, 132.9, 136.4, 137.3, 203.5. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}$: C, 86.36; H, 7.25. Found: C, 86.18; H, 7.24.

2-[(E)-6-Methyl-2-heptenyl]cyclohexanone (14a): oil; yield 90%; ${ }^{1} \mathrm{H}$ NMR $\delta 0.87(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.18-1.28(\mathrm{~m}, 2 \mathrm{H})$,
$1.28-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.45-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ $2.20(\mathrm{~m}, 6 \mathrm{H}), 2.20-2.50(\mathrm{~m}, 4 \mathrm{H}), 5.30-5.50(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ $22.5,24.8,27.5,27.9,30.4,32.5,33.2,38.7,42.0,50.8,127.2$, 132.6, 212.9. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 80.71 ; \mathrm{H}, 11.61$. Found: C, 80.50; H, 11.51 .
(E)-4,10-Dimethyl-6-undecen-3-one (14b): oil; yield 83\%; (yield was 90% when toluene was used as solvent); ${ }^{1} \mathrm{H}$ NMR δ $0.86(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.00-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.18-1.30(\mathrm{~m}, 2 \mathrm{H})$, $1.48-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.25-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.40-$ $2.68(\mathrm{~m}, 3 \mathrm{H}), 5.30(\mathrm{dt}, \mathrm{J}=15.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{dt}, \mathrm{J}=15.1$, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 7.6,16.0,22.4,27.4,30.3,34.5,36.2$, 38.6, 46.2, 126.6, 133.1, 214.7. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{O}: \mathrm{C}, 79.53$; H, 12.32. Found: C, 79.30; H, 12.81.
(E)-4-Methyl-8-(1-naphthyl)-6-octen-3-one (14c): oil; yield 82%; ${ }^{1} \mathrm{H}$ NMR $\delta 0.90-1.04(\mathrm{~m}, 6 \mathrm{H}), 1.90-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.17-$ 2.37 (m,3H), 2.38-2.50 (m, 1H), 3.69 (d, J = 5.7 Hz, 2H), 5.41 (dt, J $=15.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.74 (dt, J $=15.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.22-$ $7.50(\mathrm{~m}, 4 \mathrm{H}), 7.65(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.93 (d, J $=7.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13 \mathrm{C}}$ NMR $\delta 7.4,16.0,34.3,35.8,35.9$, $45.7,123.8,125.3,125.4,125.5,125.9,126.7,128.4,128.8,130.6$, 131.7, 133.6, 136.4, 214.3. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 85.67$; H, 8.33. Found: C, 85.58; H, 8.53.
(E)-2-Methyl-6-(naphthyl)-1-phenyl-4-hexen-1-one (14d): oil; yield 82%; ${ }^{1} \mathrm{H}$ NMR $\delta 1.16$ (d, J $=6.7 \mathrm{~Hz}, 3 \mathrm{H}$), 2.11-2.25 $(\mathrm{m}, 1 \mathrm{H}), 2.45-2.60(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.58(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, \mathrm{~J}=5.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.48(\mathrm{dt}, \mathrm{J}=15.3,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{dt}, \mathrm{J}=15.2,6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.49(\mathrm{~m}, 5 \mathrm{H}), 7.50-7.60$ $(\mathrm{m}, 1 \mathrm{H}), 7.70(\mathrm{~d}, \mathrm{~J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-8.02(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 17.0,36.0,36.5,40.7,124.0,125.4,125.5,125.7,126.0,126.8$, $128.1,128.2,128.6,128.9,130.9,131.9,132.8,133.7,136.5,136.6$, 203.8. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 87.85 ; \mathrm{H}, 7.07$. Found: C, 87.87; H, 7.23.

2-[(E)-3-(1-Naphthalenyl)-2-propenyl]cyclohexanone (14e): $\mathrm{mp} 63.5-64.5^{\circ} \mathrm{C}$; Yield 86%; ${ }^{1} \mathrm{H}$ NMR $\delta 1.25-1.50$ (m, $1 \mathrm{H}), 1.50-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.90-2.20(\mathrm{~m}, 3 \mathrm{H})$, $2.20-2.60(\mathrm{~m}, 4 \mathrm{H}), 3.76(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{dt}, \mathrm{J}=15.3$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (dt, J $=15.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.60(\mathrm{~m}, 4 \mathrm{H})$, $7.70(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, \mathrm{~J}=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\delta 24.7,27.8,32.4,33.2,36.1,41.9,50.4$, $124.0,125.3,125.5,125.6,125.9,126.7,128.5,129.5,130.2,131.8$, 133.7, 136.7, 212.5. Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}: \mathrm{C}, 86.28 ; \mathrm{H}, 7.97$. Found: C, 86.24; H, 7.97.
(E)-4,7,10-Trimethyl-6-undecene-3-one (14f): oil; yield 80%; ${ }^{1} \mathrm{H}$ NMR $\delta 0.79-0.98$ (m, 6H), 0.99-1.18 (m, 6H), 1.18$1.37(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.92-2.04(\mathrm{~m}, 2 \mathrm{H})$, 2.04-2.18 (m, 1H), 2.23-2.40 (m, 1H), 2.41-2.52 (m, 2H), 2.53$2.64(\mathrm{~m}, 1 \mathrm{H}), 5.04(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 7.5,16.0,22.4$, $27.5,29.6,31.4,34.4,37.2,37.4,46.2,120.9,137.5,214.7$; HRMS (CI) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{O}$ 210.1984, found 210.2056.

2-(3-I sopentyl-6-methyl-2-heptenyl)cyclohexanone (14g): oil; yield 87\%; ${ }^{1}$ H NMR $\delta 0.84-0.97$ (m, 12H), 1.18-1.37 $(\mathrm{m}, 5 \mathrm{H}), 1.43-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.90(\mathrm{~m}$, $1 \mathrm{H}), 1.90-2.06(\mathrm{~m}, 6 \mathrm{H}), 2.07-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.35(\mathrm{~m}, 2 \mathrm{H})$, $2.35-2.50(\mathrm{~m}, 2 \mathrm{H}), 5.04(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 22.5$, 24.9, 27.2, 27.3, 27.7, 27.9, 28.2, 33.3, 34.8, 37.5, 37.6, 41.9, 51.2, 121.3, 141.7, 212.8; HRMS (CI) m/z cal cd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{O}$ 278.2610, found 278.2610.
5-I sopentyl-2,8-dimethyl-phenyl-4-nonen-1-one (14h): oil; yield 84%; ${ }^{1 H}$ NMR $\delta 0.83-1.02(\mathrm{~m}, 12 \mathrm{H}$), 1.15-1.35 (m, 7H), 1.40-1.60 (m, 2H), 1.90-2.10 (m, 4H), 2.10-2.30 (m, 1H), $2.40-2.55(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.60(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.43-7.60 (m, 3H), $7.96(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 16.8$, 22.5, 27.7, 28.0, 28.3, 31.8, 34.7, 37.4, 37.7, 41.2, 120.9, 128.2, 128.5, 132.7, 136.6, 142.4, 204.1. Anal. Calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}$: C , 84.02; H, 10.90. Found: C, 83.87; H, 10.51.

J 09901788

[^0]: (1) (a) Masso, T.; Portella, A.; Rus, E. Perfum. Flavor. 1990, 15, 42. (b) Atta-ur-Rahman. In Natural Product Chemistry; Atta-ur-Rahman, Ed.; Springer-Verlag: Berlin, 1986; p 330. (c) Schmidt, R. R. Ibid.; p 383.
 (2) Rao, A. V. R.; Deshpande, V. H.; Reddy, S. P. Synth. Commun. 1984, 14, 469.
 (3) (a) Fiandanese, V.; Marchese, G.; Naso, F. Tetrahedron Lett. 1988, 29, 3587. (b) Dinh, T. Q.; Armstrong, R. W. Tetrahedron Lett. 1996, 37, 1161.
 (4) (a) Naf, F.; Degen, P. Helv. Chim. Acta 1971, 54, 1939. (b) J acob, P.; Brown, H. C. J. Am. Chem. Soc. 1976, 98, 7832.
 (5) (a) Kim, T. H.; I soe, S. Chem. Commun. 1983, 730. (b) Nishiyama, T.; Woodhall, J. F.; Lawson, E. N.; Kitching, W. J. Org. Chem. 1989, 54, 2183.
 (6) Koreeda, M.; Luengo, J. I. J. Am Chem. Soc. 1985, 107, 5572.
 (7) Saucy, G.; Marbet, R. Helv. Chim. Acta 1967, 50, 2091.
 (8) Mukaiyama, T.; Nagaoka, H.; Ohshima, M.; Murakami, M. Chem. Lett. 1986, 1009.
 (9) Reetz, M. T.; Walz, P.; Hübner, F.; Hüttenhain, S. H.; Heimbach, H.; Schwellnus, K. Chem. Ber. 1984, 117, 322.

[^1]: (10) (a) Kudo, K.; Saigo, K.; Hashimoto, Y.; Houchigai, H.; Hasegawa, M. Tetrahedron Lett. 1991, 32, 4311. (b) Kudo, K.; Hashimoto, Y.; Houchigai, H.; Hasegawa, M.; Saigo, K. Bull. Chem. Soc. J pn. 1993, 66, 848.
 (11) (a) Trost, B. M.; Verhoeven, T. R. In Comprehensive Organometallic Chemistry; Wilkinson, S. G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1982; Vol. 8, p 799. (b) Godleski, S. A. In ComprehensiveOrganic Synthesis; Trost, B. M., Ed.; Pergamon Press: Oxford, 1991; Vol. 4, p 585. (c) Katritzky, A. R.; Rachwal, S.; Hitching, G. J. Tetrahedron 1991, 47, 2683.
 (12) Onoue, H.; M oritani, I.; Murahashi, S. I. Tetrahedron Lett. 1973, 121.
 (13) Boldrini, G. P.; Savoia, D.; Tagliavini, E.; Trombini, C.; Ronchi, A. U. J. Organomet. Chem. 1984, $268,97$.
 (14) Hirio, K.; Suya, K.; Sato, S.; Yamamoto, M. Annu. Rep. Tohoku Coll. Pharm. 1985, 32, 75.
 (15) Inoue, Y.; Toyofuku, M.; Taguchi, M.; Okada, S.; Hashimoto, H. Bull. Chem. Soc. J pn. 1986, 59, 885.
 (16) Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. Chem. Rev. 1998, 98, 409.
 (17) (a) Katritzky, A. R.; Xie, L.; Toader, D.; Serdyuk, L. J. Am. Chem. Soc. 1995, 117, 12015. (b) K atritzky, A. R.; Li, J.; Malhotra, N. Liebigs Ann. Chem. 1992, 843. (c) White, W. A.; Weingarten, H. J . Org. Chem. 1967, 32, 213. (d) Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R. J. Am. Chem. Soc. 1963, 85, 207.
 (18) K atritzky, A. R.; Yao, J.; Qi, M. J . Org. Chem. 1998, 63, 5232.

[^2]: (19) Cook, A. G., Ed. Enamines: Synthesis, Structureand Reactions; Marcel Dekker: New York, 1988.
 (20) (a) Katritzky, A. R.; Wu, H.; Xie, L.; Rachwal, S.; Rachwal, B.; J iang, J.; Zhang, G.; Lang, H. Synthesis 1995, 1315. (b) K atritzky, A. R.; Chen, J.; Belyakov, S. A. Tetrahedron Lett. 1996, 37, 6631. (c) Katritzky, A. R.; Wang, X.; Xie, L.; Toader, D. J. Org. Chem. 1998, 63, 3445.
 (21) Yasuda, M.; Hayashi, K.; K atoh, Y.; Shibata, I .; Baba, A. J . Am. Chem. Soc. 1998, 120, 715.

